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Abstract
We have proposed the phenomenological description of dielectric hysteresis
loops in ferroelectric semiconductors with charged defects and prevailing
extrinsic conductivity. We have modified the Landau–Ginsburg approach and
shown that the macroscopic state of the aforementioned inhomogeneous system
can be described by three coupled equations for three order parameters. Both the
experimentally observed coercive field values well below the thermodynamic
values and the various hysteresis-loop deformations (constricted and double
loops) have been obtained in the framework of our model. The obtained results
quantitatively explain the ferroelectric switching in such ferroelectric materials
as thick PZT films.

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The spontaneous electric displacement switching under an external field is one of the essential
features of ferroelectric materials [1, 2]. The main comprehensively studied characteristics
of a ferroelectric hysteresis loop are the spontaneous displacement and coercive field values
[2, 3]. However, conventional theoretical approaches give a significantly incomplete picture
of the displacement switching, namely:

• Nucleation theory [4] proved that the ferroelectric inhomogeneities promote the nucleation of
domains, the appearance of several nuclei in the ferroelectric film does not need to overcome
the energetic barrier due to the long range interaction between them [5]. The calculated value
of the coercive field is inversely proportional to the film thickness [6] and thus nucleation
theory can explain the drastic increase of the coercive field with the decrease in film thickness
experimentally observed in some thin films [7, 8]. However, nucleation theory predicts that
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the coercive field tends to zero with increase in film thickness and this theory seems unsuitable
for thick films and bulk materials.

• The domain kinetics theory evolved in [9, 10] uses the Kolmogorov–Avrami statistical model
(see chapter 4 in [11]). It allows one to describe experimental data with high accuracy due
to the great amount of fitting parameters without clear interpretation. The obtained results
themselves represent only computer simulations.

• The Landau–Ginsburg theory (see [3], and also chapter 7 in [11]) evolved for the mono-
domain perfect ferroelectrics describes so-called homogeneous switching without domains.
This theory cannot describe domain pinning, domain nucleation and domain wall movement.
Calculated values of the thermodynamic coercive field [2, 3] are from several times to several
orders greater than the experimentally observed values for the real bulk ferroelectric materials
(see e.g. [12, 13]). Renormalized Landau–Ginsburg free energy with coefficients depending
on the film thickness and boundary conditions characteristics [14, 15] does not describe
adequately ferroelectric hysteresis even in epitaxial film, because it predicts very sharp
coercive field relaxation up to the aforementioned thermodynamic coercive field with film
thickness increase [16].

• As for the imperfect doped ferroelectrics, here the hysteresis loops look much thinner
[17–20] than Landau–Ginsburg ones, and its shape undergoes various deformations (‘slim’
loops [21], chapter 5 in [12]; minor loops [22, 23]; constricted loops [24, 25]). Therefore,
the modification of Landau–Ginsburg free energy (and thus Landau–Khalatnikov equation
[3] derived from it by variational method) suitable for the description of inhomogeneous
ferroelectrics switching seems necessary. Incorporation of the modified free energy with
contribution from inhomogeneities could be a solution to this problem.

To our mind, the inhomogeneous electric fields caused by charged defects should be
taken into account. However, in contrast to the random field theory, developed for the relaxor
insulator ferroelectrics [26], semiconductor properties of these materials [27] (at least extrinsic
conductivity created by charged impurities [28, 29]) should be taken into consideration. Right
in the way we modified the Landau–Ginsburg approach for the ferroelectric-semiconductors
with charged defects and found both the essential coercive field decrease and the hysteresis-
loops’ deformation experimentally observed in inhomogeneous systems.

2. The problem

The majority of imperfect ferroelectrics with non-isovalent impurities or some unavoidable
imperfections would be considered rather as extrinsic semiconductors [27, 28] than perfect
insulators.

We assume that almost immovable non-stochiometric defects or non-isovalent impurity
centres are embedded into hypothetical perfect uniaxial ferroelectric (the z direction coincides
with the polar axis). We suppose that impurity centres or defects are ionized (e.g. after UV,
photo- or thermal excitation) and even in the absence of proper conductivity, they provide a
prevailing extrinsic conductivity in the bulk sample.

For the sake of simplicity, we regard that the sample as a whole is the electro-neutral n-type
extrinsic semiconductor with positively charged defects with density ρs(r). The microscopic
spatial distribution of these defects’charge density ρs(r) is characterized by the average charge
density ρ̄s proportional to the ionized defects’ concentration and microscopic modulation δρs,
i.e. ρs(r) = ρ̄s + δρs(r). The modulation δρs fluctuates due to the great variety of misfit
effects (lattice distortions, local shift, possible clusterization at high defect concentration).



Modelling of dielectric hysteresis loops in ferroelectric semiconductors 8939

E0≠0

E0=0

E

ρs(r)

2(r0+RD)

d

a

b

2r0

n(r, t)

δ

δ

δ
E

n

Scheme 1. Charged defects with the charge density ρs (dark circles with radius r0) are screened
by the free charges with density δn (grey circles or ellipses with screening radius RD). (a) and (b)
show the system with the zero and non-zero external field E0 respectively.

For the sake of simplicity, let us assume that charged defects’ spatial distribution is quasi-
homogeneous, i.e. the average distance between defects d ∼= a/ 3

√
nd (a is the lattice constant

and nd is the defect concentration). The size distribution function of charged defects is well
localized near its sharp maximum at the average size 2r0.

The movable screening clouds δn(r, t) surround each charged centre (see scheme 1(a)).
The characteristic size of these screening clouds is of the same order as the Debye screening
radius RD. When one applies the external field E0, screening clouds of free charges are de-
formed, and nano-system ‘defect centre + screening cloud’ becomes polarized (scheme 1(b)).
Polarized regions ‘δρs(r) + δn(r, t)’ cause the additional inner electric field fluctuations
δE(r, t). According to the equations of state, the fluctuations of the inner electric field δE

cause displacement fluctuations δD.

3. General equations

Hereinafter we assume that the period of changing of the external field is much greater than the
free carriers’relaxation time, and therefore the quasi-static approximation rot E = 0, rot H = 0
is valid. Thus, Maxwell’s equations for the quasi-static electric field E and displacement D

have the form:

div D = 4πρ,
∂D
∂t

+ 4πjc = 0. (1)

They have to be supplemented by the material expressions for current and charge density:

jc =
∑
m

(µmρmE − κm grad ρm), ρ(r, t) =
∑
m

ρm(r, t) + ρs(r). (2)

Here ρm, µm and κm are the m-type movable charge volume density (m = n, p), mobility
and diffusion coefficient respectively, jc is the macroscopic free-carriers’ current, ρs(r) is the
fluctuating charge density of static defects.
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Keeping in mind that the sample is the extrinsic semiconductor with prevailing n-type
conductivity, hereinafter we neglect the proper conductivity, put n ≈ ∑

m ρm and omit the
subscript ‘m’. So equations (1), (2) can be rewritten as

div D = 4π(n + ρs), µnE − κ grad n + 1

4π

∂

∂t
D = 0. (3)

Here n < 0, µ < 0 and κ > 0. In accordance with Einstein relation µ/κ ≈ e/kBT ∗ (e < 0) the
Debye screening radius RD = √

κ/4πnµ ≈ √|kBT ∗/4πne| [27, 28]. Hereafter we suppose
that the homogeneous external field E0(t) is applied along the polar z-axis. The sample is
infinite in the transverse directions. It is rather thick and its boundaries z = −1 and z = 1
are equivalent. We suppose that the potentials of electrodes are given, so that the inner field
satisfies the condition:

1

2�

∫ �

−�

Ez(r, t) dz = E0(t). (4)

Hereinafter we introduce the averaging over sample volume V :

f(r, t) = f(t) + δf(r, t), f (t) = 1

V

∫
V

f(r, t) dr. (5)

Hereinafter the dash designates the averaging of functions f = {n, ρs, E, D}, by definition
δf(r, t) = 0. The spatial distribution of the deviations δf(r, t) consists of the part caused
by spontaneous displacement screening [27] and localized in the ultrathin screening surface
regions [30] and the one caused by microscopic modulation δρs with quasi-homogeneous
spatial distribution. For the µm-thick sample the contribution from the ultrathin screening
region to the average functions is negligibly small, and the averaging over sample volume
is equivalent to the statistical averaging with homogeneous distribution function. Using this
distribution function properties, one can regard that

δf 2m+1(r, t) ≈ 0, m = 1, 2, . . . , (6)

and the correlation between the different δf -functions is equal to zero if the total power of the
functions is an odd number.

It follows from (3)–(5) that

D(r, t) = ezD(t) + δD(r, t), (7a)

E(r, t) = ezE0(t) + δE(r, t). (7b)

Here ez is the unit vector directed along the z-axis, E is the applied uniform field E0(t) and
Ex,y = 0. Note that the average values E, D are determined experimentally [1–3]. Having
substituted (7) into (3) and averaged, one can obtain the expressions for the average quantities,
namely:

n̄ = −ρ̄s, µn̄E0 + µ δn δEz + ∂

∂t

D(t)

4π
= 0, µ δn δEx,y = 0. (8)

Absence of the average space charge density ρ̄ follows from the sample electro-neutrality.
Using ρs = ρ̄s + δρs and n = n̄ + δn in (7) and (8) one can obtain from (3) that

div(δD) = 4π(δ n + δρs(r)), (9)

µ(δn E0ez − ρ̄s δE) + µ(δn δE − δn δE) − κ grad δn + 1

4π

∂

∂t
δD = 0. (10)

The term µ(δn δE − δn δE) in (10) can be interpreted as the fluctuating circular electric currents
around charged defects, which do not contribute to the average macroscopic current.
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As the equation of state, we use the Landau–Khalatnikov equation for the displacement
z-component relaxation, but take into account the influence of fluctuating electric field δEz

created by charged defects and correlation effects. This approach takes into consideration
the spatial–temporal dispersion of the ferroelectric material. Using the original approach
evolved in paper [31] and formula (7), we modify the classical Landau–Khalatnikov equation
�∂Dz/∂t + αDz + βD3

z = Ez and obtain the following system of coupled equations:

�
∂D

∂t
+ (α + 3β δD2)D + βD 3 = E0(t), (11)

�
∂

∂t
δD + (α + 3βD

2
)δD + 3βD(δD2 − δD2) + β δD3 − γ

∂2δD

∂r2
= δEz. (12)

Here � > 0 is the kinetic coefficient, α < 0, β > 0, γ > 0 are parameters of the hypothetical
pure (free of defects) sample. Hereafter we denote δDz ≡ δD. We would like to emphasize that
the sum of equations (11) and (12) coincides with Landau–Khalatnikov equation [3] for D only
under the condition δρs = 0. This condition corresponds to the absence of inhomogeneities
or their seeding, and thus only the homogeneous polarization switching can take place when
the external field exceeds the thermodynamic coercive field. In such a case, the inner field in
the bulk of the sample is the sum of the external field and predetermined depolarization field
originated from displacement screening [27]. In contrast to this at δρs �= 0 the inner field δE
contains the random component dependent on δρs(r) and δD in accordance with (9) and (10).

The system of equations (9)–(12) is complete, because the quantities δn, δE can be
expressed via the fluctuations of displacement δD and δρs(r) allowing for (9) and (10). The
spatial distribution and temporal evolution of the displacement D(r, t) in the bulk sample is
determined by the non-linear system (9)–(12) supplemented by the initial distributions of all
fluctuating variables (e.g. distribution of charged defects). However, in our opinion, only the
implicit numerical schemes adopted for the stochastic differential equations can be used in
order to obtain the numerical solutions of (9)–(12). Therefore, hereinafter we consider only
the average characteristics of the inhomogeneous ferroelectric semiconductors. The study
of the mechanisms of domain wall pinning by the given distribution of charged defects, and
domain nucleation during spontaneous displacement reversal is beyond the scope of this paper.
Similar problems for the non-conductor ferroelectrics—ideal insulators were considered in
detail earlier (see e.g. [32, 33]).

4. Coupled equations

In order to simplify the non-linear system (9)–(12), the following assumption has been used.
The charged inhomogeneities are surrounded by screening clouds (see figure 1), therefore
δρs ∼ δn and

δρs δn ≈ −η δρ2
s , 0 < η � 1. (13)

The small positive function η is determined by the ratio RD/r0 (see figure 1 and appendix A).
When the external field amplitude increases, η value slightly decreases due to the

polarization of the system ‘charged fluctuation + screening cloud’. We suppose that η can be
approximated by an effective constant value at not a very high external field.

After elementary transformations of (10), the equation for electric field fluctuation δE
acquires the form:

δE = 1

4πµρ̄s

∂

∂t
δD + ez

δn

ρ̄s

E0(t) − κ

µρ̄s

grad δn + δn δE − δn δE
ρ̄s

. (14)
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Figure 1. The screening of the charged defects δρs by free charges δn at a small amplitude of the
external field.

Equation (9) gives

δn = 1

4π
div(δD) − δρs(r). (15)

Using (15) and (14) the electric field fluctuations δE caused by charged defects can be expressed
via δD and δρs:

δE ≈ ∂

∂t

δD
4πµρ̄s

+
(

ezE0(t) − κ grad

µ

) (
div(δD)

4πρ̄s

− δρs

ρ̄s

)

+ δE div(δD) − δE div(δD)

4πρ̄s

+ δE δρs − δE δρs

ρ̄s

. (16)

The equations (11), (12) and (16) comprise the self-consistent system of the non-linear integro-
differential equations for δD, δE and D. Its non-homogeneity is proportional to charge
fluctuations δρs and external field E0.

The approximate system of first-order differential equations for average displacement D,
its mean-square fluctuation δD2 and correlation δD δρs can be derived after some elementary
transformations of (11), (12) (see [34], appendix B and (13), (16)). Thus, we obtain three
coupled equations:

�
∂D

∂t
+ (α + 3β δD2)D + βD 3 = E0(t), (17a)

�R

2

∂

∂t
δD2 + (αR + 3βD 2) δD2 + β(δD2)2 = −E0(t)

(δρs δD)

ρ̄s

+ ϑ(δρ2
s ), (17b)

�R

∂

∂t
δD δρs + (αR + 3βD 2 + β δD2) δD δρs = −E0(t)

δρ2
s

ρ̄s

η. (17c)

Here the renormalized coefficients αR = α + (γ + R2
D)/d2 and �R = � − 1/4πµρ̄s have

been introduced. The renormalization of α takes into account the finite value of correlation
length and classical renormalization of the gradient term γ by Debye screening radius RD in
the bulk of a sample [30]. The renormalization of � takes into account the finite value of the
Maxwellian relaxation time τm = −1/4πµρ̄s.

The additional source of displacement fluctuations is the termϑ(δρ2
s ) = (4πRD)2(1 − η) δρ2

s

in the right-hand side of (17b). It originates from the diffusion field κ grad(n)/µρs (see (10),
(14) and definition RD = √

κ/4πnµ). This term has been neglected in the classical equations
of Landau–Khalatnikov type as well as in our previous paper [35].
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The system (17) determines the temporal evolution of the bulk sample dielectric response
and have to be supplemented by the initial values of D, δD2 and δD δρs at t = 0.

Coupled equations (17) have the following physical interpretation (compare with the
modified approach [31]). The macroscopic state of the bulk sample with charged defects can
be described by three parameters: D, δD2 and δD δρs. The long-range order parameter D

describes the ferroelectric ordering in the system, and the disorder parameter δD2 describes
disordering caused by inner electric fields caused by charged non-homogeneities δρs. The
correlation δD δρs determines the correlations between the movable screening cloud δn and
static charged defects δρs.

We would like to note that the derived system of coupled equations (17) might possess
chaotic regions, strange attractors as well as strongly non-ergodic behaviour and continuous
relaxation time spectra [11]. Any new system of such a type demands a separate detailed
mathematical study that was not the aim of this paper.

5. Ferroelectric hysteresis

In this section, we consider the equilibrium solution of (17), which corresponds to the quasi-
static changing external field. Let us demonstrate how the ferroelectric hysteresis loop (i.e. the
dependence of displacement D over the external field E0) changes its shape under the presence
of charged defects. First, let us rewrite equation (17) in dimensionless variables:

dDm

dτ
− (1 − 3�2

D)Dm + D3
m = Em,

τR

2

d�2
D

dτ
− (ξ − 3D2

m)�2
D + �4

D = −EmKDρ + gR2,

τR

dKDρ

dτ
− (ξ − 3D2

m − �2
D)KDρ = −EmR2.

(18)

Here, Dm = D/DS , DS = √−α/β, Em = E0/(−αDS), �D =
√

δD2/DS , KDρ = δD δρs/ρ̄sDS ,
R2 = η δρ2

s /ρ̄
2
s , τ = t/(−α�), τR = �/�R andg = [(16π2R2

D·ρ̄2
s )/(−αD2

S)](1−η)/η, ξ = αR/α

at α < 0.
The renormalized coefficient αR = α + (γ + R2

D)/d2 is positive and αR � |α| for
the typical values of parameters. For example, in Pb(Zr,Ti)O3 in CGSE system, γ ≈
5 × 10−16 cm2 [36], lattice constant a ≈ 4 × 10−8 cm, α ∼ −(0.4–2) × 10−3 [13], 0.01–
1% concentration of defects provides nd = 1.6 × (1018–1020) cm−3 and so ρs = 7.7 ×
(108–1010)QCGSE cm−3, d ∼= a/ 3

√
nd = (2–9) × 10−7cm, RD ∼ (4–8) × 10−8 cm [28], defect

radius r0 <̃ a and so αR + (0.05–20)×10−2. For the aforementioned values of parameters α, RD

and for hypothetical perfect material DS ∼ (50–100) µC cm−2 ∼ (15–30)×10−4QCGSE cm−2,
η ∼ (10−3–10−2) one obtains that g ≈ (3×10−3–2×10−2)/η ∼ (10−2–104)ξ ∼ −(0.25–400).
At d ∼ (5–10)r0 and η � 0.01 one obtains R2 = η(7–60) � 1 (see (A.7) in appendix A).
Below we numerically analyse the solution of the system (18) for the following parameters
0 � R � 1, 0.5 < g < 50, −1 � ξ � −100.

The equilibrium solution of (18) corresponds to the quasi-static changing external field.
For the harmonic modulated applied field Em = Em0 sin(wτ) the dimensionless frequency
w = −α�ω must be much less than unity, we choose w ∼|, (10−4–10−2) and � ≈ �R.
At such low frequencies, the initial conditions determine only the initial curve. They
do not play any important role in the loop shape (hereinafter we equate them to zero:
Dm(τ = 0) = 0, �2

D(τ = 0) = 0, KDρ(τ = 0) = 0).
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Figure 2. Hysteresis loops at frequencies w = 2×10−4 (a), 2×10−2 (b), R2 = 0.5, ξ = −1 and for
different values of g: 0.1 (curve 1), 0.5 (curve 2), 1 (curve 3), 1.5 (curve 4) and Landau–Khalatnikov
loop (curve LKh).
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Figure 3. Hysteresis loops for w = 10−4, R2 = 0.1 and different values of ξ and g. Basic plot:
Dm(Em); inset b: �D(Em): ξ = −10, g = 33 (curve 1), 35 (curve 2), 37 (curve 3), 40 (curve
4); inset a: ξ = −10, g = 20 (curve 1), 28 (curve 2), 33 (curve 3), 45 (curve 4) and Landau–
Khalatnikov loop (curve LKh); inset c: ξ = −1 and g = 4.5 (curve 1), 5 (curve 2), 5.5 (curve 3),
6 (curve 4).

The typical hysteresis loops Dm(Em) obtained at ξ ∼ −1, R ∼ 0.5 and different small
g ∼ 1 values are shown in figure 2. Firstly, the increase in g value leads to a decrease in
coercive field and then to the appearance of the constriction, subsequent transformation to
the double loop and finally to the disappearance of the loop. The broadening, slight tilting
and smearing of the loop shape with increase in applied-field frequency can be explained by
the increase in dielectric losses. It should be noted that for R > 1 and ξ → 1, g = 0, w → 0
hysteresis loops are absent [34].

Figure 3 demonstrates the typical changes of hysteresis loop shape caused by increasing
the density ρ̄s (note that g ∼ ρ̄s) of charged defects.

At high negative values ξ � − 1 (see inset a), the increase in g value firstly leads to a
significant decrease in coercive field and then to the loop disappearance. The coercive fields
Ecm ≈ 0.0086 and 0.0024 for the loops 2, 3 in the basic plot are much smaller than the
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Figure 4. Hysteresis loops, for w = 10−4, g = 5 and different values of ξ and R2. (a) ξ = −1,
R2 = 0.08 (curve 1), 0.09 (curve 2), 0.1 (curve 3), 0.105 (curve 4). (b) ξ = −10, R2 = 0.65 (curve
1), 0.7 (curve 2), 0.75 (curve 3), 0.85 (curve 4). Upper inset: ξ = −10, R2 = 0.1 (red curve 1),
0.5 (curve 2), 0.65 (curve 3), 1 (curve 4) and Landau–Khalatnikov loop (R = 0, curve LKh).

thermodynamic value Ecm ≈ 0.39 for the LKh-loop in inset a. The loop becomes much
slimmer rather than lower for increase in charged defect density, ρ̄s ∼ g. This effect is
somewhat similar to the known ‘square-to-slim transition’ of the hysteresis loops in some
relaxor ferroelectrics [21]. The basic plot demonstrates a drastic decrease in coercive field for
R = 0.1, ξ = −10 and g > 30. At small values |ξ| � 1 (see inset c), the increase in g value
firstly leads to a decrease in coercive field and then to the constriction appearance, subsequent
transformation to the double loop and finally to the loop’s disappearance. Inset b demonstrates
that the disorder parameter �D �= 0 over the region of hysteresis. Moreover, it reaches its
maximum value near the coercive field, where D → 0. This means that the coupled system
(17) reveals ‘inhomogeneous’ displacement switching, e.g. a sample non-polarized as a whole
splits into the oppositely polarized regions when the external field reaches a coercive value.
In contrast to this, the Landau–Khalatnikov equation describes homogeneous switching with
δD ≡ 0 independently on the external field. Therefore, system (17) is not equivalent to the
equations of the Landau–Khalatnikov type.

The typical hysteresis loops obtained at 1 � g < 10, for a negative ξ value and different
R values are shown in figure 4. At small values |ξ| � 1 (see figure 4(a)), the increase of g

value firstly leads to a decrease in coercive field and then to the appearance of the constriction,
subsequent transformation to the double loop and finally to the loop’s disappearance. At high
negative values ξ � − 1 (see figure 4(b)) the loop becomes much slimmer and slightly lower
for fluctuations R increasing (compare the Landau–Khalatnikov loop with the other loops).
Figure 4(b) demonstrates the drastic decrease of coercive field for g = 5 and R2 values more
than 0.6.

Figure 5 demonstrates the typical hysteresis loops at high negative ξ values. A drastic
decrease of coercive field corresponds to ξ ∼ −50 at g = 35 and R2 = 0.5. A further
increase in ξ value leads to an increase in coercive field. Furthermore, the loop approaches the
Landau–Khalatnikov curve at ξ → −∞.

One can notice from figures 3–5 that the following scaling exists at ξ � −1: the calculated
hysteresis loops reveal a drastic decrease in coercive field value at −gR2/ξ � 0.3. In appendix
C we obtain the estimations for static remanent displacement Dr ≡ D(ω = 0, E0 = 0), linear
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dielectric permittivity εr ≡ dD(ω = 0, E0 = 0)/dE0 and coercive field value EC(ω = 0),
namely at |ξ| � 1:

Dr ∼ DS

√
1 + 3gR2

ξ
, εr ∼ 1

−2α(1 + 3gR2/ξ)
, |EC| ∼ 2|αDS |

3
√

3

(
1 + 3gR2

ξ

)3/2

.

(19)

Note that the set of equations (19) is valid for R < 1, ξ > −10, g > 5 with 10% accuracy.
Really, at ξ � −1, Dr, εr and EC depend on the combination −gR2/ξ ≈ 16π2d2δρ2

s /D
2
s , with

the transition point at −gR2/ξ ∼ 0.3.
We can conclude that the increasing of charged defect concentration (as well as its

fluctuations) leads to a drastic decrease in the coercive field, appearance of constricted and
double hysteresis loops related to the inhomogeneous displacement switching. We demonstrate
that this result agrees much better with experiments in thick films and bulk samples, than
predictions of conventional Landau–Ginzburg and nucleation theories as shown in the next
section.

6. Comparison with experiment

Solid solutions Pb(Zr,Ti)O3 (PZT) are widely used ferroelectrics, however much more work is
needed to determine the physics of these materials [13]. A wide range of low-level additives
(0.0–5.0%) significantly influence the dielectric properties of PZT at room temperature. At
liquid-helium temperatures, all these ‘extrinsic’ effects disappear and the experimental data
agree with ‘single domain’ intrinsic permittivity calculated from thermodynamic theory. At
room temperature, donor additives such as La, Nb, Nd or Ce ‘soften’PZT dielectric properties;
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Table 1. Data for ‘soft’ Pb(ZrxTi1−x)O3 films.

Composition, Substrate, Top Thickness εr(E = 0) Ampl. E0 Rem. Coercive field
Ref., method doping electrode (µm) calc. from (kV cm−1) displacement EC (kV cm−1)

the loop Dr (µC cm−2)

x = 0.52, SrRuO3/Si, Ag, Au 1.4 2800 400 28 +96, −70
PZT-LQ [19], Nb-modified 20 3500 400 ±28 ±52
ω ∼ 100 Hz,
T = 25◦C, ADM Our fitting 2700 400 ±25 ±52

(figure 6)
x = 0.54, [20], Pt/Si, 1% Nb Pt 1.9 ∼3000 105 +25 −23
ω ∼ 1 kHz, −28 +33.5
T = 25◦C, RFMS Our fitting ∼4000 105 +20 −22.5

(figure 8) −25 +32.5
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Figure 6. Hysteresis loop observed in a 20 µm thick Nb-modified PZT film fabricated by aerosol
deposition method (ADM). Squares are experimental data from [19] at E0 = 400 kV cm−1,
solid curve is our fitting at w = 0.017, ξ � −10, gR2/ξ = −0.34 (scaling region) and
DS = 72 µC cm−2, ES = 269 kV cm−2 calculated from [13] at x = 0.5.

in particular, hysteresis loops have a rather high remanent displacement and low coercive field
[13]. We suppose that aforementioned dopants as well as numerous unavoidable Pb vacancies
(originating due to the high volatility of PbO, see chapter 10 in [12]) play the role of randomly
distributed charged defects.

For thick Pb(ZrxTi1−x)O3 films (x ∼ 0.5, � � 2 µm) and bulk samples, typical values are
the following: remanent displacement Dr = (20–50) µC cm−2 and coercive field EC =
(10–100) kV cm−1 (see [13] and table 1). Usually, the ferroelectric hysteresis loops of ‘soft’
PZT films, obtained with the help of the conventional Sawyer–Tower circuit at low frequency
(ω ∼ (0.1–1) kHz), are rather ‘thin’ and ‘sloped’ (see figures 6 and 8).

For PZT Landau–Ginsburg free energy expansion coefficients α(x), β(x) strongly depends
on the Zr molar fraction x. Near the morphotropic boundary x ≈ 0.5, PZT is ferroelectric with
the second-order phase transition (β > 0).

For the Landau–Ginsburg free energy expansion αD2/2 + βD4/4 + χD6/6 + · · ·,
the following data are known: α(0.50–0.54) = − (9.8–12.2) × 107 m F−1, β(0.50–0.54) =
(19.1–33.2) × 107 m5 C−2 F−1 (obtained by linear interpolation of data from table 7.1 in [13]
at T = 25 ◦C, SI units). From these data it is easy to calculate the Landau–Ginsburg remanent
displacement Dr = √−α/β ≈ (72–61) µC cm−2 and static (ω = 0) thermodynamic coercive
field EC = 2

√
−α3/27β ≈ (269–284) kV cm−1 in D4-approximation. These values do not
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match experimental data for Dr and EC (see table 1). In order to improve the calculations for
Dr, a higher coefficient χ(0.5–0.54) = (8.0–11.3)×108 m7 C4 F−1 is used [13], but even such
an approach leads to the significantly overestimated values of EC � 250 kV cm−1.

The observed values of Dr and EC depend not only on the composition x, but on the film
thickness, fabrication method, substrate material, etc. The thickness-driven correlation effects
[14] should be neglected if only the film thickness � � γ/λ|α|. For the typical values of surface
extrapolation length λ � 10−8 m, the gradient term γ � 10−7 F · m and |α| ∼ 10+8 m F−1 far
from Curie temperature [1], one obtains that thickness-driven effects become noticeable only
for � � 0.5 µm. So, for µm-thick PZT films we can neglect thickness-driven effects and use
the results (17)–(19). However, up to 5 µm films such interface phenomena as film–substrate
mismatch and charged layers cause asymmetry in loops [15] due to the induced electric field,
and mismatch-induced homogeneous elastic stresses renormalize the free-energy coefficients
α and β [37].

In accordance with (18) and (19) we regard values DS = √−α/β, ES = 2αDS/3
√

3 as
hypothetical ones for perfect PZT at morphotropic boundary x = 0.5, values w � −1 and
gR2/ξ (ξ � −1) as fitting parameters determined by unavoidable cation vacancies depending
on molar fraction x and/or Nb5+ concentration. Our fitting is presented in figures 6–8. The
discrepancy at high external field between the calculated and measured values is considered
to be due to the D4-approximation used in our model. In order to improve the fitting, the
higher-order terms D6, . . . should be taken into account.

The nucleation theory gives the coercive field value independent of the external field
amplitude E0. At low frequencies (w � 0.1), the Landau–Khalatnikov equation gives coercive
field values very close to the thermodynamic limit 2

√
−α2/27β almost independent of the

external field amplitude E0 (the so-called saturated ‘square’ loops), whereas experiment
data for PZT show its strong dependence on E0 (see figure 7(b)). In contrast to the
Landau–Khalatnikov model, our model shows quantitative agreement with experiment (see
figure 7).

The right-hand side shift of the 1.9 µm thick PZT film is related to the lacking layer
near the boundary metal–semiconductor at the bottom electrode (see chapter 14 in [38] and
figure 8).

It follows from table 1 and figures 6–8 that our model can quantitatively describe typical
ferroelectric hysteresis loops in thick ‘soft’ PZT films. In particular, it gives correct coercive
field values and its dependence on external-field amplitude.
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The constricted and double loops were observed in PZT ceramics doped with Nd [18] and
La [24, 25]. Sometimes constricted loops disappear after baking at high pressures, annealing
in special atmospheres or after several hundreds of switching cycles [18, 24, 25]. In order
to explain this effect, we assume that ceramics treatment or fatigue can cause a significant
change in the spatial distribution of charged defects (e.g. the characteristic distance d and
concentration nd). The latter leads to the changing of gR2 and ξ values in accordance with (18).
Thus either appearance of constricted and double hysteresis loops in aged materials [18, 25]
or their disappearance depends on the values of the parameters R, ξ and g after sample
treatment.

It should be noted that the origin of the constricted or double loops in aged ferroelectric
BaTiO3 and (Pb,Ca)TiO3 ceramics is caused by the mechanical clamping of spontaneous
polarization switching [12] and so it lies outside our theoretical consideration. This may
be related to the fact that possible evolution of the charge fluctuations caused by the
relaxation/origin of internal stresses around defects was not taken into account in our model.

Let us briefly compare our theoretical results with classical ones concerning lightly
donor-doped BaTiO3. In many cases, the presence of non-isovalent additives or unavoidable
impurities, even in very restricted quantity, significantly attenuates piezoelectric properties of
BaTiO3 ceramics, increases electrical conductivity, diffuses the peak of dielectric response
and makes the hysteresis loop slim for low coercive field (see chapter 5 in [12]). Therefore,
we consider the influence of charged defects on the ferroelectric properties of such ‘soft’
materials, neglecting the contribution of inhomogeneous mechanical deformations arising
due to intergranular stresses as well as local symmetry distortion appearing near the
defects.

The 0.1–0.3% of La, Nb or Ce-doping changes a wide band-gap intrinsic semiconductor
BaTiO3 to an extrinsic n-type semiconductor, achieved by replacing Ba2+ or Ti4+ with ions
Le3+, Ce3+ or Nb5+ with higher valency [12, 39]. In most of the BaTiO3 ceramics, unavoidable
impurities such as Fe3+ are present. In such a case, the sample has a slightly brown hue.
Such ceramics reveal ‘soft’ hysteresis loops with small area and low coercive field, diffuse
dielectric properties and disappearance of spontaneous displacement (see [12], table 2), in
contrast to BaTiO3 single crystals which undergo a first-order phase transition with abrupt
disappearance of displacement at T = 110 ◦C. We suppose that coupled equations (18)
evolved for ferroelectrics with second-order phase transition can be applied to the doped or
‘soft’ BaTiO3 ceramics. Obtained results are summarized in figure 9 and table 2.



8950 A N Morozovska and E A Eliseev

Table 2. Data for BaTiO3 ceramics.

Composition, Experimental values Landau–Ginsburg Nucleation Our fitting at
doping of bulk figures 5.16 and 5.33 in theory for pure theory [6] � → ∞ (see figure 9)
BaTiO3 [12], T = 25 ◦C, bulk BaTiO3, EC ∼ ( 1

�
)2/9

ceramics ω = 60 Hz, T = 25 ◦C
E0 = 15 kV cm−1 � → ∞

EC Dr EC Dr EC EC Dr

(kV cm−1) (µC cm−2) (kV cm−1) (µC cm−2) (kV cm−1) (kV cm−1) (µC cm−2)

Soft 3.5 7.5 200 25 1 (� = 25 µm) 4 7.5
3% Nb 0.94 0.8 0 (� → ∞) 1 0.8
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Figure 9. Our fitting for hysteresis loop observed in BaTiO3 ceramics (see figures 5.16 and
5.33 in [12]) obtained at E0 = 15 kV cm−1, ξ � −10, w = 0.005, ES = 200 kV cm−1,
DS = 25 µC cm−2. Curve 1, ‘soft’ ceramics (gR2 ξ= − 0.33); curve 2, ceramics doped with
3% of Nb (gR2 ξ= − 0.39).

It follows from table 2 and figure 9 that our model can quantitatively describe typical
ferroelectric hysteresis loops in ‘soft’ BaTiO3 ceramics; in particular, it gives correct coercive
field values.

7. Conclusion

We have proposed a phenomenological description of polarization switching peculiarities
in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity.
Specifically, we modified the Landau–Ginsburg approach for the aforementioned
inhomogeneous systems and obtained the system of coupled equations (17). Solving the
system (17) one can get information about system ordering as a whole, without defining
space distribution of the appeared displacement inhomogeneities; however the present model
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has the following advances over the conventional ones and our previously published works
[15, 34, 35]:

• The coupled system (17) reveals inhomogeneous displacement switching in contrast to the
Landau–Khalatnikov equation, which describes the homogeneous one.

• We have shown that increasing the charged defect concentration (as well as its fluctuations)
leads to a drastic decrease of the coercive field and the appearance of constricted and double
hysteresis loops.

• The obtained results quantitatively describe typical ferroelectric hysteresis loops in thick
donor-doped PZT films and BaTiO3 ceramics; in particular, our model gives correct coercive
field values and its dependence over external field amplitude, in contrast to the conventional
Landau–Ginsburg and nucleation theories.
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Appendix A

Let us estimate the dependence of parameters η and R2 on the distribution characteristics of
charged defects. Values of the average distance d between them and size r0 can be expressed
via defect concentration nd and lattice constant a as d = a/ 3

√
nd , r0 ∼ a. If charged defects

are clustered, the distance d can be several times greater than 1/ 3
√

nd . We consider the case
when defects’ concentration nd is not more than a few per cent, i.e. d > 3r0 (see figure 1).
For the sake of simplicity, we approximate the defects’ charge densities by isotropic Gaussian
distributions:

ρs(r) =
N∑

i=1

qi

π3/2r3
0i

exp

[
− (r − ri)

2

r2
0i

]
. (A.1a)

The charge density of screening clouds of carriers that originated around charge defects can be
estimated in Gaussian approximation using the Debye potential [40] and the Green’s function
method, namely at r0 ∼ RD we obtain:

n(r) ≈ nf +
N∑

i=1

ei

π3/2(r0i + RD)3
exp

[
− (r − ri)

2

(r0i + RD)2

]
. (A.1b)

Here nf is the charge density of free electrons in the conduction band of an extrinsic
semiconductor [28, 38]. In our case, a high-defect concentration, nd ∼ 1 %, provides
nf ≈ n̄ = −ρ̄s, and so only the relatively small amount of electron charge ei is localized
near charged defects qi.

In the hypothetical case, when all impurity atoms are identical and regularly distributed,
one obtains that qi ≡ q0, ei ≡ e0, r0i ≡ r0, |ri+1 − ri| ≡ d and thus we obtain from (A.1) that

ρ̄s = N

V

∫
V

d3r
q0

π3/2r3
0

exp

(
− r2

r2
0

)
= q0

N

V
≡ q0

d3
, (A.2)

n̄ = nf + N

V

∫
V

d3r
e0

π3/2(r0 + RD)3
exp

(
− r2

(r0 + RD)2

)
= nf + e0

d3
. (A.3)
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It is obvious from (A.2) and (A.3) that q0 = ρ̄sd
3 and e0 = −(ρ̄s + nf )d3 leading to −ρ̄s = n̄.

Similarly to (A.2) and (A.3) we calculate that

ρs(r)n(r) = ρ̄snf − ρ̄s(nf + ρ̄s)

[1 + r2
0/(r0 + RD)2]3/2

(
d√
πr0

)3

, ρ2
s (r) = ρ̄2

s

(
d√

2πr0

)3

.

(A.4)

Now it is easy to find the correlations

δρs δn ≡ (ρs − ρ̄s)(n − n̄) = ρsn + ρ̄2
s , δρ2

s ≡ (ρs − ρ̄s)2 = ρ2
s − ρ̄2

s . (A.5)

With the help of the above-mentioned assumptions and calculations (A.2)–(A.5) it is easy to
obtain that

δρs δn = ρ̄s(nf + ρ̄s)

(
(d/

√
πr0)

3

[1 + r2
0/(r0 + RD)2]3/2 − 1

)
, δρ2

s = ρ̄2
s

((
d√

2πr0

)3

− 1

)
.

(A.6)

Using the definitions R2 = −δρs δn/ρ̄2
s ≡ ηδρ2

s /ρ̄
2
s and η ≈ −δρs δn/δρ2

s , one derives from
(A.6):

R2 =
(

1 + nf

ρ̄s

) (
(d/

√
πr0)

3

[1 + r2
0/(r0 + RD)2]3/2 − 1

)
,

η �
(

1 + nf

ρ̄s

) (
2

(1 + RD/r0)2 + 1

)3/2

. (A.7)

Allowing for nf ≈ −ρ̄s, we obtain that always η � 1. Thus at d ∼ (5–10)r0 and η � 0.01,
R2 = η(7–60) � 1. However, when defects’ concentration becomes very small, e.g. for
d → ∞ and nd → 0, intrinsic conductivity could not be neglected in comparison with the
extrinsic case and therefore the obtained expressions (A.6) and (A.7) become incorrect.

Appendix B

The equations for δD2 and δD δρs obtained directly from (12) have the form:

�

2

∂

∂t
δD2 + (α + 3βD 2(t)) δD2 + β δD4 = γ δD

∂2 δD

∂r2
+ δD δEz, (B.1)

�
∂

∂t
δD δρs + (α + 3βD 2(t)) δD δρs + β δD3δρs = γ δρs

∂2 δD

∂r2
+ δρs δEz. (B.2)

On multiplying (12) by δD2 or δρs δD and averaging, using (5) and (6), one obtains that

δD4 = (δD2)2, δD3 δρs = δD2 δD δρs. (B.3)

Taking into account that the average period of the distribution of inhomogeneities is d (see
figure 1), one obtains that ∂/∂r ∼ i/d and so

γ δD
∂2 δD

∂r2
∼ − γ

d2
δD2, γ δρs

∂2 δD

∂r2
∼ − γ

d2
δρs δD. (B.4)

Let us express the field variation δEz using δD and δρs. In accordance with (17),

δEz ≈ ∂

∂t

δD

4πµρ̄s

− E0(t)

(
δρs

ρ̄s

− div(δD)

4πρ̄s

)
+ κ

µ

∂

∂z

δρs

ρ̄s

− κ

µ

∂

∂z

div(δD)

4πρ̄s

+ δn δEz − δn δEz

ρ̄s

.

(B.5)
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For a thick sample with equivalent boundaries z = ±� the term

∂

∂z
δD2

is equal to zero. In accordance with comments to (6) δn δE2
z = 0 and δρs δn δEz = 0; thus one

can derive from (B.5) the following approximations for the correlations:

δD δEz = 1

8πµρ̄s

∂

∂t
δD2 − E0(t)

(δρs δD)

ρ̄s

+ κ

µ

(
δD

∂

∂z

δρs

ρ̄s

)
− κ

4πρ̄sµ
δD

∂

∂z
div(δD).

(B.6)

In accordance with (13) the term

κ

µ

(
δD

∂

∂z

δρs

ρ̄s

)
= − κ

µρ̄s

(
δρs

∂

∂z
δD

)

can be estimated as

−4πκ

µρ̄s

δρs(δρs + δn) ≈ −(1 − η)
4πκ

µρ̄s

δρ2
s .

In accordance with the definition of Debye radius RD = √
κ/4πnµ, this term

−(1 − η)(4πκ/µρ̄s) δρ2
s = 16π2R2

D(1 − η) δρ2
s . Taking into account that the average period

of the distribution of inhomogeneities is d (see figure 1), the last term in the right-hand side of
(B.6) can be estimated as

κ

4πρ̄sµ

∂ δD

∂z
div(δD) ∼ κ

4πρ̄sµ

(
∂ δD

∂z

)2

= −R2
D

d2
δD2.

Thus the correlation

δD δEz = 1

8πµρ̄s

∂

∂t
δD2 − E0(t)

(δρs δD)

ρ̄s

+ 16π2R2
D(1 − η) δρ2

s − R2
D

d2
δD2. (B.7)

For a thick sample with equivalent boundaries z = ±�, the term ∂(δρ2
s /ρ̄s)/∂z is equal to zero

and therefore we obtain from (B.5) that

δρs δEz = 1

4πµρ̄s

∂

∂t
δρs δD + E0(t)

δρsδn

ρ̄s

− κ

4πρ̄sµ
δρs

∂

∂z
div(δD). (B.8)

In accordance with (13) the last two terms on the right-hand side of (B.6) can be estimated as

E0(t)
δρs δn

ρ̄s

≈ −η
δρ2

s

ρ̄s

E0(t),
κ

4πρ̄sµ
δρs

∂

∂z
div(δD) ∼ − κ

4πρ̄sµd2
δρs δD = R2

D

d2
δρs δD

and so

δρs δEz = 1

4πµρ̄s

∂

∂t
δρs δD − η

δρ2
s

ρ̄s

E0(t) − R2
D

d2
δρs δD. (B.9)

Thus gradient terms in (B.1) and (B.2) can be either neglected at (γ + R2
D)/d2 � α or the

coefficient α can be renormalized as α → αR = (α+ (γ +R2
D)/d2). Using (B.3), (B.4), (B.7)

and (B.9) we obtain the equations (18b) and (18c) from the equations (B.1) and (B.2).
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Appendix C

In the stationary case (ω → 0, ∂/∂t ≡ 0), the correlation δD δρs can be expressed via D 2 and
δD2 from (17.c); thus the equation (17.b) acquires the form:

δD2 = E2
0R

2

(αR + 3βD2 + βδD2)2
+ ϑ

(αR + 3βD2 + β δD2)
. (C.1)

As it follows from equation (17.a), δD2 = (E0 −αD−βD 3)/3βD, and the modified equation
for D can be obtained directly from (C.1), namely[
α + 3β(E2

0R
2 + ϑ(αR − α/3 + 8βD 2/3 + E0/3D))

(αR − α/3 + 8βD2/3 + E0/3D)2

]
D + βD 3 = E0. (C.2)

Let us recall that ϑ = (4πRD)2(1 − η) δρ2
s , D2

S = −α/β, R2 = η δρ2
s /ρ̄

2
s (see (18)).

(1) The remanent (spontaneous) displacement Dr ≡ D(E0 = 0) obtained from (C.2)
satisfies the following biquadratic equation:

D2
r = D2

S

[
1 − 3ϑ/D2

S

(αR − α/3 + 8βD2
r /3)

]
. (C.3)

As should be expected, the value D2
r = D2

S obtained in the Landau–Ginzburg model is the
zero approximation in (C.3) over the parameter ϑ/(αD2

S). Thus, in the first approximation over
parameter ϑ/(αD2

S), one derives from (C.3) that

D2
r ≈ D2

S

[
1 − 3ϑ/D2

S

αR − 3α

]
. (C.4)

(2) The static linear dielectric permittivity εr ≡ dD(E0 = 0)/dE0 obtained from (C.2)
satisfies the following linear equation:

εr

[
α + 3βϑ

(αR − α/3 + 8βD2
r /3)

− 16β2ϑD2
r

(αR − α/3 + 8βD2
r /3)2

+ 3βD2
r

]

= 1 + βϑ

(αR − α/3 + 8βD2
r /3)2

.

In accordance with (C.3)

α + 3βϑ

(αR − α/3 + 8βD2
r /3)

= −βD2
r ,

and thus we obtain

εr =
[

1 + βϑ

(αR − α/3 + 8βD2
r /3)2

] [
2βD2

r − 16β2ϑD2
r

(αR − α/3 + 8βD2
r /3)2

]−1

. (C.5)

As should be expected, the value εR ≡ 1/(−2α) obtained in the Landau–Ginzburg model is
the zero approximation in (C.5) over the parameter ϑ/(αD2

S). Thus, in the first approximation
over the parameter ϑ/(αD2

S) one derives from (C.4) and (C.5) that

εr ≈ 1

−2α

[
1 + 3βϑ

(αR − 3α)α
− 9βϑ

(αR − 3α)2

]−1

. (C.6)

(3) The static coercive field value EC(D = 0) can be determined from the divergence
of generalized permittivity, namely from the condition dD(E0 = EC)/dE0 → ∞. Thus,
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the condition of zero denominator in the cumbersome expression for dD(E0)/dE0 obtained
directly from (C.2), gives the following equation for coercive field value determination:

EC = −2βD 3 + β(16βD 3 − EC)(2E2
CR2 + ϑ(αR − α/3 + 8βD 2/3 + EC/3D))

(αR − α/3 + 8βD2/3 + EC/3D)3
. (C.7)

Equation (C.7) is solved coupled with (C.2) at E0 = EC, and the couple of values
{D(EC), EC} can be found at least numerically. As should be expected, the values
{D = DS/

√
3, EC = −2βD 3 ≡ 2αDS/3

√
3} obtained in the Landau–Ginzburg model are

the zero approximation in (C.7) and (C.2) over the parameters R and ϑ/(αD2
S). Thus, in the

first approximation over these parameters, one derives from (C.2) and (C.7) the following
system:

EC ≈
{

αD(EC)[1 + ν1] + βD 3(EC),

−2βD 3(EC)[1 + ν2],
(C.8a)

ν1 = − 4α2R2

9(αR − α)2
+ 3βϑ

(αR − α)α
, ν2 = 8α3R2

3(αR − α)3
− 9βϑ

(αR − α)2
. (C.8b)

In the first approximation over parameters ν1,2, one derives from the system (C.8) that

EC = 2αDS

3
√

3

(
1 + 3ν1

2

)
, D(EC) = DS√

3

(
1 + ν1

2
− ν2

3

)
.

Allowing for (C.8b) we obtain

EC ≈ 2αDS

3
√

3

(
1 − 2α2R2

3(αR − α)2
+ 9βϑ

2(αR − α)α

)
. (C.9)

Let us rewrite the approximate formulas (C.4), (C.6) and (C.9) in the dimensionless variables
R, ϑ/(αD2

S) = gR2 and ξ = αR/α (α < 0, αR � 0, see also (18)), as follows:

Dr ≈ DS

√
1 − gR2

1 − ξ/3
, εr ≈ −1/2α

1 − [gR2/(1 − ξ/3) − [gR2/(1 − ξ/3)2]
, (C.10)

EC ≈ 2αDS

3
√

3

(
1 − 2R2

3(1 − ξ)2
− 9gR2

2(1 − ξ)

)
. (C.11)

Comparing the approximate formulas (C.11) and (C.12) with the numerical calculations based
on (18) at ω → 0, i.e. on (C.3), (C.5) and (C.7), we obtain that (C.10)–(C.12) are valid for
R < 1, ξ < −5, g > 5 with 10% accuracy (e.g. see figure 3). Moreover, the following
estimations are valid

|EC| ≈ 2|αDS |
3
√

3

(
1 − 3gR2

(1 − ξ)

)3/2

, εr ≈ 1

−2α(1 − gR2/(1 − ξ/3))
. (C.12)
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